Question 1 (8 points). Find all solutions of the following system of equations.

$$
\begin{aligned}
x+y & =z+w+1 \\
x+z & =y+w+2 \\
x+w & =y+z+3
\end{aligned}
$$

Question 2 (8 points). For which values of x is the matrix

$$
A=\left[\begin{array}{ccc}
1 & -2 & -3 \\
2 & x-1 & 4 \\
x+2 & -1 & 2
\end{array}\right]
$$

non-invertible (singular)? Justify your answer!

Question 3 (10 points). Let

$$
S=\left\{\left[\begin{array}{c}
-s \\
s-5 t \\
3 t+2 s
\end{array}\right]: s, t \in \mathbb{R}\right\} .
$$

1. Show that S is a subspace of \mathbb{R}^{3}.
2. Find a basis for S.
3. What is the dimension of S ?
4. Find a subspace D of S such that $\operatorname{dim}(D)=1$.

Question 4 (8 points). Suppose that $\{u, v\}$ is a linearly independent set in a vector space
V. Show that the set $\{u-v, u+v\}$ is linearly independent.

Question 5 (8 points). Let $T: \mathcal{P}_{2} \longrightarrow M_{2 \times 2}$ be the linear transformation given by

$$
T\left(a x^{2}+b x+c\right)=\left[\begin{array}{cc}
c & a-2 b \\
2 b-a & c
\end{array}\right]
$$

(a). Find a basis for the null space $N(T)$.
(b). Find a basis for the range space $R(T)$.

Question 6 (8 points). Let T and S be linear transformations such that

$$
T\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=\left[\begin{array}{c}
2 x+y+z \\
3 y+3 z \\
4 x
\end{array}\right] \text { and } S\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=\left[\begin{array}{c}
2 x+2 z \\
2 y-2 z \\
z
\end{array}\right]
$$

Which of T and S are isomorphisms? For the one(s) that is/are find the matrix representation of the inverse transformation.

Question 7 (8 points). (a) Find the characteristic polynomial and the eigenvalues of the matrix

$$
A=\left[\begin{array}{llll}
1 & 0 & 2 & 0 \\
0 & 1 & 2 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 0 & 2
\end{array}\right]
$$

(b). Find the eigenvalue corresponding to the eigenvector $\left[\begin{array}{c}0 \\ 1 \\ -1 \\ 0\end{array}\right]$ of the matrix $\left[\begin{array}{cccc}1 & 1 & 1 & 0 \\ -1 & -1 & 0 & -1 \\ -1 & 1 & 0 & 1 \\ 0 & -1 & -1 & 0\end{array}\right]$

Question 8 (8 points). Consider the matrix

$$
A=\left[\begin{array}{ccc}
1 & 2 & -2 \\
-2 & 5 & -2 \\
-6 & 6 & -3
\end{array}\right]
$$

(a). Diagonalize A, if possible. That is, if possible, find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$.
(b). Use part (a) to find A^{10}. [Do not simplify]

Question 9 (10 points). The set $B=\left\{\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right]\right\}$ is a basis for \mathbb{R}^{3}.
(a). Use the Gram-Schmidt process to find an orthonormal basis N from B.
(b). Express $\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$ as a linear combination of the vectors of N.

Question 10 (24 points). Identify the most likely solution.

1. If A and B are $n \times n$ matrices, and $\operatorname{det}(A)=3$, $\operatorname{det}(B)=5$, then $\operatorname{det}(2 A+B)$ is
(a) 8
(b) 11
(c) 17
(d) 30
(e) impossible to determine from the information given.
2. The homogeneous matrix equation $A \mathbf{x}=\mathbf{0}$
(a) is consistent and may have infinitely many solutions.
(b) is consistent and always has a unique solution.
(c) is either inconsistent or has a unique solution.
(d) is either inconsistent or has infinitely many solutions .
(e) must be inconsistent
3. The angle between vectors $\mathbf{u}=(1,-1,0)$ and $\mathbf{v}=(-1,0,1)$ is
(a) $\pi / 4$
(b) $\pi / 3$
(c) $\pi / 2$
(d) $2 \pi / 3$
(e) π
4. The set $\left\{1,1+x, 1+x^{3}\right\} \subseteq \mathcal{P}_{3}$
(a) is linearly dependent but does not span \mathcal{P}_{3}.
(b) is linearly dependent and spans \mathcal{P}_{3}.
(c) is linearly independent but does not span \mathcal{P}_{3}.
(d) is linearly independent and spans \mathcal{P}_{3}.
(e) may be any of the above.
5. If $T: \mathbb{R}^{8} \rightarrow \mathbb{R}^{3}$ is linear and onto, then the dimension of the nullspace of T is
(a) 3
(b) 4
(c) 5
(d) 8
(e) impossible to determine from the information given.
6. If $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is linear, and $T\left(\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right)=\left[\begin{array}{l}3 \\ 1\end{array}\right]$ and $T\left(\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right)=\left[\begin{array}{c}2 \\ -1\end{array}\right]$ then $T\left(\left[\begin{array}{l}12 \\ 22 \\ 32\end{array}\right]\right)=$
(a) $\left[\begin{array}{c}24 \\ 6\end{array}\right]$
(b) $\left[\begin{array}{c}25 \\ 7\end{array}\right]$
(c) $\left[\begin{array}{c}26 \\ -8\end{array}\right]$
(d) $\left[\begin{array}{c}28 \\ -10\end{array}\right]$
(e) $\left[\begin{array}{l}30 \\ 12\end{array}\right]$
7. The inverse of matrix $A=\left[\begin{array}{ll}4 & 3 \\ 2 & 1\end{array}\right]$ is
(a) $\left[\begin{array}{cc}4 & -3 \\ -2 & 1\end{array}\right]$
(b) $\left[\begin{array}{cc}1 & -3 \\ -2 & 4\end{array}\right]$
(c) $\left[\begin{array}{ll}3 & 4 \\ 1 & 2\end{array}\right]$
(d) $\left[\begin{array}{cc}-1 / 2 & 3 / 2 \\ 1 & -1 / 2\end{array}\right]$
(e) undefined (A is singular).
8. If A is a diagonalizable 8×8 matrix with characteristic polynomial $(\lambda-1)^{4}(\lambda-4)^{3}(\lambda-$ 7), Then $\operatorname{Rank}(A-4 I)$ is
(a) 2
(b) 3
(c) 5
(d) 6
(e) 8
9. If A is a 2×3 matrix and $A B$ is a 2×5 matrix, then B is
(a) 2×5
(b) 5×2
(c) 3×5
(d) 5×3
(e) none of the above
10. The system of equations with augmented matrix

$$
\left[\begin{array}{ccccc}
4 & -3 & 8 & 2 & 11 \\
0 & -2 & 1 & 7 & b \\
0 & 0 & 0 & b^{2}-4 & b-2
\end{array}\right]
$$

is consistent for
(a) all values of b.
(b) all values of b except 0 .
(c) all values of b except 2 .
(d) all values of b except 2 and -2 .
(e) all values of b except 0,2 and -2 .
11. The rank of the matrix

$$
\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
0 & 6 & 7 & 8 & 9 \\
0 & 0 & 0 & 0 & 3
\end{array}\right]
$$

is
(a) 1
(b) 2
(c) 3
(d) 4
(e) 5
12. Let A and B be invertible $n \times n$ matrices, then $\left(A B^{T}\right)^{-1} A(A B)^{T}=$
(a) A
(b) A^{T}
(c) $A B^{T}$
(d) $A^{-1} B^{T} A^{T}$
(e) $A^{-1}\left(B^{T}\right)^{-1} A A^{T} B^{T}$
(f) $\left(B^{T}\right)^{-1} A^{T} B^{T}$

